The ALCADIA (AutoLogous Human Cardiac-Derived Stem Cell To Treat Ischemic cardiomyopathy) Trial

Naofumi Takehara MD, PhD
The Department of Cardivascular Medicine,
Kyoto Prefectual University of Medicine, Japan

And

M. Nakata, T. Ogata, T. Nakamura,
S. Matoba, S. Gojo, T. Sawada, H. Yaku and H. Matsubara
Clinical trials of current cell therapy

To exceed current cell therapies of cardiac regeneration..

1. New cell source; Cardiac derived stem cell
 : high potential of cardiac differentiation
 : rapid expansion as stem cell

2. New application; Tissue engineering
 : promotion of the efficacy of cell therapy
 cell survival, blood supply, cytokine effect..
To generate autologous cardiac-derived stem cell (CSC) from minimum cardiac biopsy specimens
To achieve graft survival of transplanted cell in host ischemic myocardium
~ Hybrid cell therapy using Biodegradable scaffold ~

ALCADIA Study Design

- **Primary Purpose: Safety**
- **Eligibility criteria: Ischemic cardiomyopathy**
 - with past history of congestive heart failure (NYHA III, IV)
 - with LV dysfunction (15% < LVEF < 35%)
- **Study Phase: Phase 1, Open Label, Non-Randomized**
- **Intervention Model : hybrid cell therapy concomitant with CABG**
 - intramyocardial injection (20 sites) of autologous CSC (total 5×10^5 cell/kg)
 - sustained release of human recombinant bFGF (200µg)
- **Masking: Endpoint Classification**
 - Safety: MACE (Major cardiac event), serious adverse event
 - Preliminary efficacy study
 - NYHA classification, LV function (echocardiography)
 - infarct volume (MRI), wall motion score (MRI)
- **Enrollment: 6 [Anticipated]**
ALCADIA Study Scheme

A.

Endomyocardial biopsy

B.

2.5±0.3 mg/piece

C.

Total 21.7±2.3 mg

D.

33.8 ±2.7 days

E.

Total 3.7±0.8×10^7 cell
20 cites

F.

bFGF 200μg
ALCADIA: Flow Diagram

<table>
<thead>
<tr>
<th>Enrollment</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety analysis set (6 month)</td>
<td>6</td>
</tr>
<tr>
<td>Age</td>
<td>55.5±10.8</td>
</tr>
<tr>
<td>Sex (male;%)</td>
<td>83.3</td>
</tr>
<tr>
<td>BMI</td>
<td>25.5±4.1</td>
</tr>
<tr>
<td>DM (%)</td>
<td>83.3</td>
</tr>
<tr>
<td>HT (%)</td>
<td>66.7</td>
</tr>
<tr>
<td>Infarct artery</td>
<td>2.5±1.0</td>
</tr>
<tr>
<td>LAD</td>
<td>100</td>
</tr>
<tr>
<td>LCX</td>
<td>16.7</td>
</tr>
<tr>
<td>RCA</td>
<td>100</td>
</tr>
</tbody>
</table>
ALCADIA: baseline characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment</td>
<td>6</td>
</tr>
<tr>
<td>NYHA classification</td>
<td>3.6 ± 0.5</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>26.7 ± 5.7</td>
</tr>
<tr>
<td>LVESV index (ml/m²)</td>
<td>74.1 ± 28.2</td>
</tr>
<tr>
<td>infarct volume (mass: g)</td>
<td>30.4 ± 13.0 g</td>
</tr>
<tr>
<td>infarct volume / LV mass (%)</td>
<td>22.5 ± 6.0 %</td>
</tr>
<tr>
<td>Wall motion score (0 ~ 54)</td>
<td>17.2 ± 3.1</td>
</tr>
</tbody>
</table>

18 segment model: 6 segments at basal, mid, apex normokinesis=0, hypokinesis=1, akinesis=2, dyskinesis=3
Cardiac-derived stem cell from ischemic cardiomyopathy patients

A

Day 1

Day 31

B

population doubling

0 11 17 24 32
day

- Case01
- Case02
- Case03
- Case04
- Case05
- Case06

C

Cell surface marker

CD105 CD90 Stro1 CD29 CD45 MHC II

98.9 50.7 9.4 90.9 0.2 0.6

D

case 1 case 2 case 3 case 4 case 5 case 6 Human iPS

Nanog

Oct 3/4

Rex1

NKx2.5

GATA4

GAPDH
Results: Safety of ALCADIA

<table>
<thead>
<tr>
<th>Serious Adverse event(SAE)</th>
<th>ALCADIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adverse event</td>
<td>0</td>
</tr>
<tr>
<td>• MACE (6Mo)</td>
<td>1</td>
</tr>
<tr>
<td>VT/Vf</td>
<td>0</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>1</td>
</tr>
<tr>
<td>Tumor</td>
<td>0</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
</tbody>
</table>

- No complication of right ventricular biopsy
- 1 graft occlusion within 3 weeks after cardiac bypass surgery (case 6)
Results: Efficacy of ALCADIA

~ Restore the loss of LV function ~

LVEF (TTE: %)

baseline 4 weeks 24 weeks

Case 1 Case 2 Case 3
Case 4 Case 5

LVEF (MRI: %)

baseline 24 weeks

diastole systole

p=0.0117

p=0.0133

5cm
Results: Efficacy of ALCADIA

~ improve symptom of heart failure and exercise capacity ~

<table>
<thead>
<tr>
<th>NYHA Classification</th>
<th>24 months</th>
<th>baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NYHA Classification</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

maximal oxygen consumption (ml/kg/min)

- Baseline: p=0.0308
- 24 weeks

Bar graph showing a significant increase from baseline to 24 weeks.
Results: Efficacy of ALCADIA

~ partial reverse remodeling in cell transplantation area ~

![Graph showing wall motion score over time]

Wall motion score (MRI)

- Baseline
- 24 weeks

- p=0.0013

![Graph showing infarct volume/LV mass over time]

Infarct volume/LV mass (%)

- Baseline
- 24 weeks

- p=0.1742

Images showing MRIs at baseline and 24 weeks.
Conclusion

1. The transplantation of human cardiac-derived stem cell with controlled release of bFGF is safe and feasible to ischemic cardiomyopathy patients.

2. This novel biotherapy may have a potential to restore the injured heart to functional repair with reconstruction of post-ischemic environment.

Acknowledgements

Grant in aid of Ministry of Education, Culture, Sports, Science and Technology - Japan.